From Single-Agent to Multi-Agent: Challenges for Plan Recognition Systems
نویسندگان
چکیده
The ability of recognizing a multi-agent plan a plan which has been generated for multiple executing agents implies the skill of recognizing the plan underlying a collective activity in which a group of agents is involved. Multi-agent plan recognition is a necessary and useful extension of current PR systems in some domains. In this work starting from CHAPLIN (CHart Applied to PLan INference, a chart-based plan recognition system) we discuss how extending this system to the multi-agent world, many problems arise. More in general we consider the challenges that the multi-agent domains produce for the plan recognition systems.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملEfficient context free parsing of multi-agent activities for team and plan recognition
We extend a recent formalization of multi-agent plan recognition (MAPR), to accommodate compact multi-agent plan libraries in the form of context free grammars (CFG), incomplete plan executions, and uncertainty in the observation trace. Some existing approaches for single agent plan recognition cast it as a problem of parsing a single agent activity trace. With the help of our multi-agent CFG, ...
متن کاملAdaptive Distributed Consensus Control for a Class of Heterogeneous and Uncertain Nonlinear Multi-Agent Systems
This paper has been devoted to the design of a distributed consensus control for a class of uncertain nonlinear multi-agent systems in the strict-feedback form. The communication between the agents has been described by a directed graph. Radial-basis function neural networks have been used for the approximation of the uncertain and heterogeneous dynamics of the followers as well as the effect o...
متن کاملAdaptive neural control of nonlinear fractional order multi- agent systems in the presence of error constraintion
In this paper, the problem of fractional order multi-agent tracking control problem is considered. External disturbances, uncertainties, error constraints, transient response suitability and desirable response tracking problems are the challenges in this study. Because of these problems and challenges, an adaptive control and neural estimator approaches are used in this study. In the first part...
متن کاملMulti-Agent Plan Recognition: Formalization and Algorithms
Multi-Agent Plan Recognition (MAPR) seeks to identify the dynamic team structures and team behaviors from the observations of the activity-sequences of a set of intelligent agents, based on a library of known team-activities (plan library). It has important applications in analyzing data from automated monitoring, surveillance, and intelligence analysis in general. In this paper, we formalize M...
متن کامل